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AbstracL The current-field and conductivity-field characteristics of random r hopping as well as 
r-E hopping system with a strong electron-phonon coupling have been calculated numerically 
and discussed by BBttger and co-workers. They have assumed a random but macroscopically 
homogeneous dishibution of cenW over the sample. However, in most real cases an exwmely 
thin layer can M y  be thought to be macroscopically homogeneous and the local hopping-centre 
density should depend on the distance hom the electrodes. In the present work we apply the 
BBttger-Wegener procedure to random r hopping and r-& hopping system with macroscopic 
average density exponentially dependent an the distance from the contact. Only a strong 
electron-phonon coupling will be considered, i.e. we shall consider small-polaron transport in a 
disordered solid. The influence of the inhomogeneity in the centre disuibution on current-field 
and conductivity-field characteristics may be summarized as follows. Firstly. for r-hopping 
vansport in homogeneous layers, BGUger and Wegener observe a decrease in the differential 
conductivity with increasing field, its local minimum being followed by an exponential increase; 
we confirm the result for homogeneous systems, whereas for inhomogeneous systems we find 
that, on increasing the degree of the site distribution inhomogeneity the local conductivity 
minimum is no longer followed by an exponential conductivity increase. but the system becomes 
ohmic (conductivity saturation), at least up to the fields consistent with the assumption of wnstant 
&er concentration. Secondly, for r -E  hopping in homogeneous layers, Bllttger et al observe 
for not too high an energy spread in the hopping centres thb the local conductivity maximum 
occurring just after the ohmic region is followed by a local minimum, the latter being followed 
by an exponentid conductivity increase for still higher fields. At low temperatures. which 
is equivalent to a l x g e r  energy spread in the hopping centres, the height of the conductivity 
maximum increases. whereas the local minimum becomes shallower and disappeam completely 
for sufficiently low temperatures. We find that in sufficiently non-uniform systems, for all 
temperJfures. there is no longer a conductivity maximum. but the nanuw low-field ohmic range is 
followed immediately by the conductivity decrease, and after reaehing a negative local minimum 
the conductivity increases to a very low positive constant value, at least up to the fields consistent 
with the assumption of a field-independent cam'er concendon,  

1. Introduction 

The non-ohmic hopping conductivity of disordered systems has been discussed in a number 
of papers (Bottger and Wegener 1984, Bottger et al 1985, 1986, BSttger and Bryksin 1979, 
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1980, 1985, Nguyen Van Lien and Shklovskii 1981, Fishchuk 1982), both for r hopping 
(nearest-neighbour hopping) and for r-& hopping (variablerange hopping). The main results 
may be summarized as follows. For r-hopping transport it was found by Bottger and 
Wegener (BW) (1984) that the differential conductivity U decreases with increasing applied 
external field E even at relatively low fields, and for sufficiently high fields the conductivity 
U increases rapidly, so that a local minimum in the differential conductivity exists (for 
experimental results see Redfield (1975), Zabrodskii and Shl i iak  (1977) and Bryksin et al 
(1980)). The phenomenon has been predicted theoretically by Bottger and Bryksin (1980) in 
the framework of the effective-medium approximation (cf also Battger and Bryksin (1985)) 
and verified by the 'exact' numerical calculation performed for a sufficiently representative 
set of r-hopping cenfres (sw). For r-€ hopping, Bottger et af (1985, 1986) observe that 
the local maximum occurring just after the ohmic region is followed by a local minimum, 
the latter being followed by an exponential conductivity increase for sW1 higher fields. On 
increasing the width of the energy disbibution of the centres (i.e. lowering the temperature), 
the height of the maximum increases, whereas the local minimum completely disappears 
for a sufficiently low temperature. 

All the results summarized above have been obtained for a random hut macroscopically 
homogeneous spatial distribution of hopping centres. However, in most real cases an 
extremely thin layer may hardly be thought of as macroscopically homogeneous. Despite 
the relaxation of the density of structural defects due to the differences in bond lengths, a 
macroscopically inhomogeneous average density of the centres may also arise from diffusion 
of atoms from the substrate and chemical reactions. All these reasons make it necessary 
to consider the case of random distributions of hopping centres, with their macroscopic 
density varying as a function of the distance from the injecting contact. Recently, such a 
spatial inhomogeneity in the distribution of centres has been proved to influence markedly 
the transient currents measured in classical time-of-flight experiments for hopping transport 
(Rybicki et nl 199 la, 1992), as well as for multiple-trapping transport for the isothermal case 
(Rybicki and Chybicki 1988, 1989, 1990, Rybicki et a1 1990a) and for the non-isothermal 
case (Tomaszewicz et a1 1990, Rybicki etal 1991b). Thus, it Seems interesting to investigate 
also the influence of the layer inhomogeneity on stationary current-field and conductivity- 
field characteristics. Preliminary results have been briefly reported by Rybicki et al (1990b, 
1991~) and Mancini et a1 (1991). In the present paper we describe in detail the results 
Of the numerical simulation of the abovsmentioned current-field and conductivity-field 
characteristics for r-hopping and r-E-hopping transport of small polarons in disordered 
system, i.e. in the approximation of strong electron-phonon coupling (sections 3.1 and 
3.2, respectively). In our model calculations we use the average density of hopping centres 
which exponentially decreases in space, and which for the case of +&-hopping transport has 
a Gaussian distribution in energy. However, before presenting the results, in the following 
section we briefly recall the basic equations describing hopping conductivity. 

2. Basic equations 

The basic equations describing hopping conductivity are here formulated in the form 
presented by Bottger and Bryksin (1985). For an elechic field E of arbitrary strength, 
the densityj of the DC hopping current is given by 
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where R,,, is the position of the mth hopping site, 51 is the volume of the system, N is the 
total number of sites within a, and i(m', m) is the current running from site m' to site m. 
The latter may be wntten as 

i(m',m) = eW,,,c[p,,(l -p , )exp(f~v,c)  -pm(l  -P,,)~XP(-~BV~,,,JJ (2 )  

where Vmjm = V,, - V,, V,,, = E,,, + eu,, E, is the energy of the mth site, U, is the 
potential of the external field E at the point R,,,, e is the elementary charge, B = kT, 
k is the Boltzmann constant, T is the temperature and W,,,,, is the symmetrized hopping 
probability. The latter, although in general given by an extremely complicated expression, 
in the limit of a strong electron-phonon coupling becomes simply 

Wmrm = woexpI-WLcl l  (3) 

where LY is the reciprocal Bohr radius, and the pre-factor WO depends weakly on the external 
electric field E, as well as on the site position R, and energy E,,,. In the present paper 
we deal only with the case of strong coupling, leaving the limiting case of weak electron- 
phonon interaction to be discussed in subsequent work. 

Our numerical results have been obtained by solving equations (1)-(3), together with 
the condition 

i (m', m) = 0. 
" 

(4) 

The algorithm that we used follows the general guidelines describes by BW. 

3. Numerical results and discussion 

In this section we shall discuss in turn the cases of r-hopping transport (section 3.1) and 
r-&-hopping transport (section 3.2). both for a strong electron-phonon interaction. Before 
going on to the results, we give here the values of the parameters, which are common to 
r-hopping and r4-hopping simulations. The concentration n of electrons in the system 
was chosen to be 0.5 and was assumed not to depend on the applied electric field. This 
means that the current-electric field characteristics were calculated under the normalization 
condition 

N-' pm = n = 0.5. 
m 

The qualitative behaviour of the calculated characteristics does not depend on the value of 
n, and the specific value n = 0.5 was chosen to maximize the current values. Following the 
previous work on the subject by BW and Bottger etal (1985, 1986). we deal with relatively 
diluted systems with (rN-lJ3 = $N = N/n). 

As mentioned in the introduction, for model simulations we used an exponential spatial 
dependence of the average density Nh(X) of hopping centres, where x is the distance 
measured from one of the electrodes, given by 0 < x < L (L is the layer thickness). 
In particular we assume that 

= NOS@) (6) 
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where S(x)  is the distribution shape function; in our case 

S ( x )  = exp(-xjD) (7) 

where D is a characteristic length of the site concentration decay. The ratio L I D  may be 
referred to as the degree of inhomogeneity of the distribution. In what follows we consider 
L/D to be in the range from 0.0 to 3.0. The results obviously do not depend on the 
layer polarization, i.e. the characteristics are invariant with respect to the transformation 
S ( x )  -+ S(L - x )  (for the same random distribution of centres). As far as the influence 
of the random initial distribution is concerned, the characteristics for various random 
generations of the centre distribution lead to differences in numerical values, leaving the 
curve shape qualitatively unchanged. The quantitative discrepancies are most pronounced 
for macroscopically uniform distributions and almost do not exist for highly inhomogeneous 
structures. 

As far as the energy distribution of centres is concerned, in the case of r-8-hopping 
transport we shall consider a normal Gaussian distribution, with standard deviations in the 
range from 3kT to 16kT. 

3.1. r-hopping transport 

For r-hopping transport we haye performed calculations for cubes containing 100 and 500 
centres. We present here the results obtained for 500-point simulations, which are of course 
more reliable. We would like to stress that the results for 100 points are qualitatively 
identical with those for 500 points for non-uniform structures ( L I D  > 0.5). In the case of 
a uniform (L jD = 0.0) or nearly uniform (LID = 0.5) centre distribution, however, the 
results are extremely sensitive to the number of points in the simulation box and to their 
random distribution. 

Figure 1 shows current-electric field characteristics for various degrees LID of 
inhomogeneity in the range 0.0-3.0. The characteristics obtained f a  non-uniform centre 
distributions, with LID in the range 1.0-3.0, reveal an N-like shape, i.e. they show a current 
maximum at fairly low fields, followed by current decay down to a minimum value, and by 
a subsequent exponential current increase. Such a behaviour is the same as obtained by BW 
for a uniform centre distribution. However, our calculations for a uniform average centre 
density (LjD = 0) do not coincide with the calculations of BW. Firstly, we could calculate 
only up to E' = 0.4, where E' = $eEpcr-* (for higher values of E', negative centre 
occupation probabilities were found). Secondly, in the field range that we scanned, our j 
versus E' characteristic increases monotonically, whereas BW observed an N-shaped curve, 
with the current maximum at about E' = 0.2, and the current minimum at about E' = 0.4 
(figure 2 in the paper of BW; note the different arguments on the horizontal axis in their work 
and in the present work). Thus, in contrast with BW, we do not observe an N shape of the j 
versus E' characteristic for the uniform centre distribution. This difference could probably 
be attributed to the different numbers of points in the simulation box. Simulations for 100 
points give neither a current minimum nor a differential conductivity minimum; for 500 
points, as shown here (curves a in figures 1 and 2), there is no current minimum, but there 
is a distinct minimum in the differential conductivity; finally, the 1000-point simulation 
of BW permitted them to observe both a current minimum and a differential conductivity 
minimum. In view of such a size dependence we shall assume that the result of BW for the 
uniform centre distribution is more reliable than ours. The extremely strong size dependence 
of the characteristics in the case of the uniform distribution remains in contrast with the 
case of highly non-uniform centre distributions (L/D l.O), where the results reveal only 
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marginal size effects. Even a small degree of spatial inhomogeneity (cf curve b in figure 
1, showing an intermediate behaviour between L I D  = 0 and L j D  1 curves) reduces 
markedly the size effects. Thus, we claim OUT results io be fully reliable for non-uniform 
systems ( L I D  2 l.O), and in what follows we shall concentrate on the influence of the 
spatial non-uniformity in the centre distribution on the sample conductivity. 
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E'=eE/3~''/2 E.= eEpa-'/2 
Figure 1. Dependence of the current-field chamc- 
teristics on the inhomogeneity parameter L I D  for r-  
hopping bansport (system pnrameters: number N of 
c e n m .  500; average centres occupation n = 0.5, dilu- 
tion = 1/15): curve a. L I D  = 0.0 (macro- 
scopically homogeneous cenlre distribution); curve 
b, L I D  = 0 3  curve c. L I D  = 1.0; curve d, L I D  = 
1.5; curve e, L I D  = 2.0: curve f ,  L I D  = 2.5: CUNC 

g, L I D  = 3.0. 

Figure 2. Differential conductivities o(E')la(E' = 0) 
calculnled from chancteristics a- in figure 1. 

Curves c-g in figure 1, calculated for systems with a marked degree of spatial non- 
uniformity in the r-hopping centre distribution have an N-like shape, as found by BW for 
the case of a uniform centre distribution. The quantities which depend markedly on L I D  
are the position and depth of the current minima. With increasing sample non-uniformity 
the current minima occur for systematically increasing fields, and the minimal current values 
become lower. 

Figure 2 shows differential conductivities o(E') corresponding to the j versus E' 
characteristics of figure 1 (normalized to a(E' = 0)). As is seen, the curves corresponding 
to L I D  2 1.0 almost coincide, and thus the relative differential conductivity variations in 
the function of the applied field do not depend on the degree of spatial inhomogeneity in the 
centre distribution, assuming a specific shape common to sufficiently non-uniform systems. 
The point to be noted is that conductivity saturation occurs at a certain critical value E: of 
the applied field, which is only weakly dependent on LID (for our 500-point simulations, 
E,' 5 0.2; this value increases with increasing number of points in the simulation box, 
remaining independent of L J D ,  however). The non-uniform systems thus become ohmic, 
at least up to fields consistent with the assumption of constant carrier concentration. Such a 
behaviour is quite different from the case of uniform systems, where there is no conductivity 
saturation, but the local conductivity minimum is followed by an exponential conductivity 
increase. In order to understand such behaviour we have studied the histograms of the 
average occupation probabilities of the centres as a function of E', for values of L I D  equal 
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to 0.0.0.5, . . . , 2S ,  3.0. Figures 3, 4 and 5 show several such histograms (for LID = 0.0, 
1.5 and 3.0, respectively) at several values of E'. The average occupation probabilities 
P(i), i = 1, , , . , 10 were calculated as the arithmetic means over subsequent slices L/10 
thick. The histograms indicated in figures 3(a), 4(a) and 5(u) show average occupations 
for exmmely low electric field (E' = 0.005). P(i) is approximately constant over the layer 
thickness for the uniform centre distribution (figure 3(u)) and increases with increasing i 
when the centre average concentration decays with increasing i (figures 4(a) and 5(a)). 
Nowhere is the average occupation close to unity, and the value E' = 0.005 falls in the 
ohmic region for all values of L I D .  Increasing the field leads to marked changes in P ( i ) .  In 
particular, within the sample emerges a region with the average occupation probability close 
to unity. The field range, within which at least one of the P(i)-values effectively approaches 
the value of unity, corresponds to a subohmic portion of each j versus E' curve, i.e. to the 
decay of the differential conductivity to zero. For higher fields the extension of the region 
with P ( i )  close to unity increases and, for more non-uniform smctures, covers almost the 
whole bulk of the sample. This field range Corresponds to the portions of decreasing current 
with increasing field, i.e. to the region of negative differential conductivity. Finally, the 
increasing field is again able to enforce effective carrier motion, and the current begins to 
increase slightly, so that the conductivity assumes small positive values; in this field interval 
the spatial extension of the P( i )  = 1 region begins to shrink. The exponential conductivity 
increase at high fields expected for macroscopically uniform systems (Hill 1971, Moa 1971, 
Shklovskii 1972, 1976, Austin and Sayer 1974, Apsley and Hughes 1975, Poll& and Riess 
1976) is not observed for the non-uniform systems investigated. It seems that the sample 
inhomogeneity shifts the region of the exponential current increase to field values which 
could not be consistent with the assumption of constant carrier concentration. 

Figure 3. Hislopuns of the average occupation Figure 4. Histograms of the avenge occupation 
probability for L I D  = 0.0 1 various electric fields: pmbability for L I D  = 1.5 at various elearie fields: 
(a) E' = 0.005; (b )  E' = 0.4. (a) E' = 0.0W (b)  E' = 0.2; (c )  E' = 0.4; 

( d )  E' = 0.6. 

3.2. r-E-hopping transport 

The results of simultations in the case of the r-l-hopping transport mechanism show much 
less pronounced box-size effects than those for the r-hopping mechanism. A number of 
tests leads us to consider the simulations performed for only 100 r-€ hopping centres as 
Fully representative. 

Figures 6 and 7 show the dependence of the j versus E" characteristics on the energy 
width of the Gaussian centre distribution, for L I D  equal to 3.0 and 0.0, respectively. Here, 
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the field argument E" is defined as E" = eEN-'I3/(2 A&), where A& is the threefold 
standard deviation of the Gaussian distribution. Figures 8 and 9 show the field dependences 
of the differential conductivity, extracted from the data presented in figures 6 and 7, 
respectively. For strongly non-uniform samples ( L / D  > 2.0) the j versus E"characteristics 
calculated in rather a wide range of A& have a well defined maximum (figure 6). in contrast 
with the uniform systems, where the current monotonically increases with increasing E" 
(figure 7). The differential conductivities corresponding to the curves in figures 6 and 7 
are shown in figures 8 and 9, respectively (normalized to u(E" = 0)). As is seen, for 
non-uniform structures the conductivity decreases to its negative minimum value at low 
fields and then increases asymptotically to a negative value close to zero. The width of the 
field range, where U is negative and has an absolute value significantly different from zero, 
decreases systematically with increasing standard deviation of the energy distribution of the 
centres (or alternatively with decreasing temperature). On the contrary, uniform systems 
do not show negative conductivity, but only a shallow local minimum for not too wide 
an energy distribution (figure 9), in accordance with the results presented by Bottger et al 
(1986). Here again, in a similar way to the case of r hopping, an exponential increase in the 
conductivity at high fields, characteristic of uniform systems, is shifted to much higher fields 
of values inconsistent with the assumption of constant canier concentration. Histograms of 
average occupation probabilities are presented in figures 10 and 11. For L I D  = 3.0 and 
u~ = 3kT, a full-occupation region within the sample emerges at E" N 1.0 (figure lo@)), 
which corresponds to the current maximum (figure 6). For higher fields the whole bulk of 
the sample has almost completely occupied centres (figures lO(c) and lO(d)). Up to the 
maximum field that we consider, the full-occupation region does not shrink, and no current 
increase is observed. On the contrary, for a macroscopically uniform spatial distribution of 
centres (figure II), a narrow region of completely occupied centres appears for E" =- 4.0, 
which is probably high enough to enforce effectively hops longer than the width of the fully 
occupied slice, and so no current decrease is observed. Figures 12 and 13 show the currents 
j(E") and normalized differential conductivities o(E")/u(O), respectively, for L I D  = 1.5. 
The latter value of the ratio L / D  corresponds to the transition between the typical uniform- 
sample behaviour (figures 7 and 9) and the typical non-uniform-sample behaviour (figures 6 
and 8). 

Figure 5. Histog" of lhe average occupation Figure 6. Dependence of the current-field characteris- 
probability for L J D  = 3.0 at various elecuic fields: tics On the width (standard deviation) at of the Gaus- 
(a) E' = 0,005; (b) E' = 0.2; (c) E' = 0.8; sianenergydisuibutionofcentresforaninhomogeneity 
(d)  E' = 1.0. parameter L I D  = 3.0 (system parameters: number N 

of centres. 100; avenge cenhe occupation n = 0.5; 
dilution aM-'J3 = 8): curve a, as = 3kT; c w e  
b,uc=6kT;curvec,q =1ZkT;cwed,a~=l16kT.  
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Figure 7. Dependence of the current-field characteris- 
tics on lhe width (standard deviation) U& of lhe Gaus- 
sian energy distribution of centres for a macroscopi- 
cally uniform centre distribution ( L I D  = 0.0) (system 
panmeters: number N of centres. 100; average centre 
occupation n = O S :  dilution uN-'" = A): curve 
a, UE = 3kT: curve b, ut = 6kT:  curve c, us = 12GT; 
curve d. uc = 16kT. 

Figures. Differential conductivities o(C) /u(E" = 0) 
calculated from characteristics a 4  in figure 6. 

Figure 9. Differential conductivities u(E")/a(O) Figure 10. Histograms of lhe average occupation 
calculated from characteristics a 4  in figure 7. pmbabilily for L I D  = 3.0 at various electric fields 

(width U& of the Gaussian distribution. 3kT): (a) E" = 
0.0; (b)  E" = 1.0; (c) E" = 4.0; (d)  E" = 5.0. 

4. Concluding remarks 

The model of hopping transport described in section 2 is rather difficult to treat numerically. 
In order to obtain fully realistic results one should perform calculation involving-as we 
estimate-at least IO4 hopping centres in the simulation box. For such a number of 
cenws, one could claim to obtain results free of box-size effects. However, increasing 
markedly the number of sites in the simulation box not only would increase strongly the 
difficulty of operating numerical methods but also would demand extremely long CPU 
times; therefore, such calculations are in practice impossible. We think, however, that 
even somewhat oversimplified numerical results reveal at least qualitative behaviours of 
real physical systems. On the basis of the results discussed above, we can state that there 
are both significant quantitative and significant qualitative changes due to quasicontinuous 
variations in the average centre concentration over the sample thickness. 
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Figure 11. Histograms of the avenge occupation 
probability for L j D  = 0.0 (uniform spatial centres 
distribution) at various electric fields (width os of the 
Gaussian distribution, 3kT): (a) E" = 0.0; ( b )  E" = 
1.0; (c )  E" = 4.0 ( d )  E" = 5.0. 

Figure U. Dependence of the current-field character- 
istics on the width (standard deviation) U& of the G a u -  
sian energy distribution of centra for an inhomogeneity 
parameter L I D  = 1.5 (system paIameters: number N 
of centres, 100; average centre occupalion n = 0.5; 
dilution uN-'D = &): curve a, uc = 3kT,  a w e  
b, U& = 6kT; curvec, a& = 12kT; curved, uc = i6kT. 

a0 1.0 2.0 3.0 L.0 5 0  Figure 13. Differential condQ&vities o(E")/u(O) 
E"=eEN4n/2A& calculated from characteristics a 4  in figure 12. 
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